Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Heliyon ; 10(3): e25520, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327438

RESUMO

Here, green banana pulp extract (PE) has been used as a bio-reducing agent for the reduction of silver ions to silver nanoparticles (AgNPs). Bio-synthesized AgNPs were characterized by using UV, XRD, FEEM, TEM, and FTIR analysis. The face-centered cubic structures of AgNPs were formed with an average crystallite size of 31.26 nm and an average particle size of 42.97 nm. In this report, the electrical activities of green synthesized AgNPs have been evaluated along with the antibacterial activities. The antibacterial activities of AgNPs were evaluated against two pathogenic bacteria: Escherichia coli (gram-negative) and Staphylococcus epidermidis (gram-positive). AgNPs were added to the electrochemical cell and results demonstrated the improvement of power of the electrochemical cell. Green synthesized AgNPs showed excellent antibacterial activities against both gram-positive and negative bacteria and most importantly the NPs played an important role as an effective catalyst to enhance the electrical performance of bio-electrochemical cells. These significant findings may help in the advancement of nanotechnology in biomedical applications as well as in the creation of cheap and eco-friendly power generation devices.

2.
RSC Adv ; 13(51): 36130-36143, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090076

RESUMO

Here we synthesized Bi2WO6 (BWO) using both solid-state reaction (SBWO) and hydrothermal (HBWO-U and HBWO-S) methods. The orthorhombic Pca21 phase purity in all samples is confirmed from Rietveld refinement of X-ray diffraction data, Raman spectroscopy, and Fourier transform infrared spectroscopy. The HBWO-U and HBWO-S morphology revealed rectangular, spherical, and rod-like features with an average particle size of 55 nm in field emission scanning electron micrographs. A high-resolution transmission electron micrograph showed spherical-shaped particles in the HBWO-U sample with an average diameter of ∼10 nm. The diffuse reflectance-derived indirect electronic band gaps lie within the 2.79-3.23 eV range. The BWO electronic structure is successfully modeled by Hubbard interaction Ud and Up corrected Perdew-Burke-Ernzerhof generalized gradient approximation GGA-PBE+Ud+Up with van der Waals (vdW) force in effect. The optimized (Ud, Up) values are further justified by tuning the Hartree-Fock (HF) exact-exchange mixing parameter αHF from 25% in Heyd-Scuseria-Ernzerhof (HSE06) to 20% in the PBE-HF20% functional. Moreover, no inconsistencies were seen in the GGA-PBE+Ud+Up+vdW simulated crystallographic parameters, and the elastic tensor, phonon, and linear optical properties. Overall, the computationally cheap GGA-PBE+Ud+Up with vdW force may have successfully probed the physical properties of BWO.

3.
Nanotechnology ; 35(9)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029451

RESUMO

An electrical application of green synthesized silver nanoparticles (Ag NPs) by developing a unique bio-electrochemical cell (BEC) has been addressed in the report. Here, garlic extract (GE) has been used as a reducing agent to synthesize Ag NPs, and as a bio-electrolyte solution of BEC. Ag NPs successfully formed into face-centered cubic structures with average crystallite and particle sizes of 8.49 nm and 20.85 nm, respectively, according to characterization techniques such as the UV-vis spectrophotometer, XRD, FTIR, and FESEM. A broad absorption peak at 410 nm in the UV-visible spectra indicated that GE played a vital role as a reducing agent in the transformation of Ag+ions to Ag NPs. After that four types of BEC were developed by varying the concentration of GE, CuSO4. 5H2O, and Ag NPs electrolyte solution. The open circuit voltage and short circuit current of all cells were examined with the time duration. Moreover, different external loads (1 Ω, 2 Ω, 5 Ω, and 6 Ω) were used to investigate the load voltage and load current of BEC. The results demonstrated that the use of Ag NPs on BEC played a significant role in increasing the electrical performance of BEC. The use of GE-mediated Ag NPs integrated the power, capacity, voltage efficiency, and energy efficiency of BEC by decreasing the internal resistance and voltage regulation. These noteworthy results can take a frontier forward to the development of nanotechnology for renewable and low-cost power production applications.


Assuntos
Alho , Nanopartículas Metálicas , Prata/química , Alho/metabolismo , Nanopartículas Metálicas/química , Substâncias Redutoras , Antioxidantes/química , Eletrólitos , Extratos Vegetais/química
4.
Neuroscience ; 522: 42-56, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142182

RESUMO

Tau is an intracellular protein known to undergo hyperphosphorylation and subsequent neuro-toxic aggregation in Alzheimer's disease (AD). Here, tau expression and phosphorylation at three canonical loci known to be hyperphosphorylated in AD (S202/T205, T181, and T231) were studied in the rat pilocarpine status epilepticus (SE) model of temporal lobe epilepsy (TLE). We measured tau expression at two time points of chronic epilepsy: two months and four months post-SE. Both time points parallel human TLE of at least several years. In the whole hippocampal formation at two months post-SE, we observed modestly reduced total tau levels compared to naïve controls, but no significant reduction in S202/T205 phosphorylation levels. In the whole hippocampal formation from four month post-SE rats, total tau expression had reverted to normal, but there was a significant reduction in S202/T205 tau phosphorylation levels that was also seen in CA1 and CA3. No change in phosphorylation was seen at the T181 and T231 tau loci. In somatosensory cortex, outside of the seizure onset zone, no changes in tau expression or phosphorylation were seen at the later time point. We conclude that total tau expression and phosphorylation in an animal model of TLE do not show hyperphosphorylation at the three AD canonical tau loci. Instead, the S202/T205 locus showed progressive dephosphorylation. This suggests that changes in tau expression may play a different role in epilepsy than in AD. Further study is needed to understand how these changes in tau may impact neuronal excitability in chronic epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Humanos , Ratos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Modelos Animais , Fosforilação , Pilocarpina , Estado Epiléptico/metabolismo , Proteínas tau/metabolismo
5.
RSC Adv ; 13(21): 14291-14305, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180022

RESUMO

Here we present a comprehensive density functional theory (DFT) based ab initio study of copper bismuth oxide CuBi2O4 (CBO) in combination with experimental observations. The CBO samples were prepared following both solid-state reaction (SCBO) and hydrothermal (HCBO) methods. The P4/ncc phase purity of the as-synthesized samples was corroborated by Rietveld refinement of the powdered X-ray diffraction measurements along with Generalized Gradient Approximation of Perdew-Burke-Ernzerhof (GGA-PBE) and the Hubbard interaction U corrected GGA-PBE+U relaxed crystallographic parameters. Scanning and field emission scanning electron micrographs confirmed the particle size of the SCBO and HCBO samples to be ∼250 and ∼60 nm respectively. The GGA-PBE and GGA-PBE+U derived Raman peaks are in better agreement with that of the experimentally observed ones when compared to local density approximation based results. The DFT derived phonon density of states conforms with the absorption bands in Fourier transform infrared spectra. Both structural and dynamic stability criteria of the CBO are confirmed by elastic tensor and density functional perturbation theory-based phonon band structure simulations respectively. The CBO band gap underestimation of GGA-PBE as compared to UV-vis diffuse reflectance derived 1.8 eV was eliminated by tuning the U and the Hartree-Fock exact-exchange mixing parameter αHF in GGA-PBE+U and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals respectively. The HSE06 with αHF = 14% yields the optimum linear optical properties of CBO in terms of the dielectric function, absorption, and their derivatives as compared to that of GGA-PBE and GGA-PBE+U functionals. Our as-synthesized HCBO shows ∼70% photocatalytic efficiency in degrading methylene blue dye under 3 h optical illumination. This DFT-guided experimental approach to CBO may help to gain a better understanding of its functional properties.

6.
RSC Adv ; 13(8): 5576-5589, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798614

RESUMO

Here we present a detailed ab initio study of two experimentally synthesized bismuth niobate BiNbO4 (BNO) polymorphs within the framework of density functional theory (DFT). We synthesized orthorhombic α-BNO and triclinic ß-BNO using a solid-state reaction technique. The underlying Pnna and P1̄ crystal symmetries along with their respective phase purity have been confirmed from Rietveld refinement of the powdered X-ray diffraction measurements in combination with generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) based DFT simulations. The scanning electron micrographs revealed average grain sizes to be 500 nm and 1 µm for α-BNO and ß-BNO respectively. The energy-dispersive X-ray spectroscopy identified the Bi, Nb, and O with proper stoichiometry. The phase purity of the as-synthesized samples was further confirmed by comparing the local density approximation (LDA) norm-conserving pseudo-potential based DFT-simulated Raman peaks with that of experimentally measured ones. The relevant bond vibrations detected in Fourier transform infrared spectroscopy were matched with GGA-PBE derived phonon density of states simulation for both polymorphs. The structural stability and the charge dynamics of the polymorphs were verified from elastic stress and born charge tensor simulations respectively. The dynamical stability of the α-BNO was confirmed from phonon band structure simulation using density functional perturbation theory with Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. The electronic band gaps of 3.08 and 3.36 eV for α-BNO and ß-BNO measured from UV-Vis diffuse reflectance measurements were matched with the sophisticated HSE06 band structure simulation by adjusting the Hartree-Fock exchange parameter. Both GGA-PBE and HSE06 functional were used to simulate complex dielectric function and its derivatives with the help of Fermi's golden rule to define the optical properties in the linear regime. All these may have provided a rigorous theoretical analysis for the experimentally synthesized α-BNO and ß-BNO polymorphs.

7.
Braz J Biol ; 84: e268001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36541960

RESUMO

Molecular appraoch for identification of unknown species by using Cytochrome b gene is an effective and reliable as compared with morphological based identification. For DNA barcoding universal molecular genes were used to identify the species. Cytochrome b is a specific gene used for identification purpose. DNA barcoding is a reliable and effective method compared to the different traditional morphological methods of specie identification. So,in the present study which was conducted to identify the species, a total of 50 fish samples were collected from five different sites. DNA was extracted by using the Phenol Chloroform method from muscle tissue. Five sequences were sequenced (one from each site), analyzed, and identified specific species as Pangasius pangasius. Identified sequences were variable in length from 369 bp (Site 1), 364 bp (Site 2), 364 bp (Site 3), 352 bp (Site 4), and 334 bp (Site 5). Identity matches on the NCBI database confirmed the specific specie as P. pangasius. A distancing tree was drawn to show maximum likelihood among the same and different species. Yet, in many cases fishes on diverse development stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative tool for species identification and phylogenetic study. This work intends to provide an updated and extensive overview on the DNA based methods for fish species identification by using Cytochrome b gene as targeted markers for identification purpose.


Assuntos
Peixes-Gato , Citocromos b , Animais , Filogenia , Citocromos b/genética , Peixes-Gato/genética , Código de Barras de DNA Taxonômico/métodos
8.
Sci Rep ; 12(1): 20392, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437280

RESUMO

Chili (Capsicum annuum L.) and brinjal (Solanum melongena L.) are the most widely grown solanaceous crops in the world. However, their production has reduced over several years due to the attack of various fungal and bacterial pathogens and various abiotic factors. Still, the major constrain in their production are pathogens with fungal etiology, especially the fungal wilt of solanaceous crops. Fusarium oxysporum and Fusarium solani have been previously identified as the pathogens causing wilt disease in chili and brinjal. Recently, a new fungal pathogen F. equiseti has been reported as the causal agent of wilt disease infecting chili. The current study focused on identifying fungal pathogens associated with the wilted plants of chili and brinjal, collected from different parts of the Himalayan region of Kashmir valley, through morpho-cultural and molecular characterization. DNA extraction, PCR amplification, and sequencing were performed on various isolates. DNA barcoding using the internal transcribed spacer region (ITS) was used to identify the pathogen followed by the pathogenicity test. Further confirmation of the pathogen was done by sequencing of transcription elongation factor (TEF) and Calmodulin (CAL2). In current study Fusarium chlamydosporum has been reported as the wilt causing pathogen of chili and brinjal for the first time in Kashmir Himalayas.


Assuntos
Capsicum , Solanum melongena , Solanum melongena/microbiologia , Verduras , Produtos Agrícolas
9.
Braz J Biol ; 84: e264473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36169410

RESUMO

The present study was carried out in Hayat Abad Industrial Estate located in Peshawar to assess the levels of cadmium (Cd) that were present in the soil as well as the plant parts (Roots and shoots). To evaluate the phytoremediation potential of the plants different factors i.e. Bioconcentration Factor (BCF), Translocation Factor (TF), and Bioaccumulation Coefficient were determined. These plants were grown in their native habitats (BAC). We have analysed, cadmium concentration from soil which are collected from 50 different locations ranged from 11.54 mg/Kg (the lowest) to 89.80 mg/Kg (highest). The maximum concentration (89.80 mg/Kg) of cadmium was found in HIE-ST-16L Marble City and HIE-ST-7 Bryon Pharma (88.51 mg/Kg) while its minimum concentration (12.47 mg/Kg) were detected in the soil of Site (HIE-ST-14L Royal PVC Pipe) and (11.54 mg/Kg) at the site (HIE-ST-11 Aries Pharma). Most plant species showed huge potential for plant based approaches like phyto-extraction and phytoremediation. They also showed the potential for phyto-stabilization as well. Based on the concentration of cadmium the most efficient plants for phytoextraction were Cnicus benedictus, Parthenium hysterophorus, Verbesina encelioides, Conyza canadensis, Xanthium strumarium, Chenopodium album, Amaranthus viridis, Chenopodiastrum murale, Prosopis juliflora, Convolvulus arvensis, Stellaria media, Arenaria serpyllifolia, Cerastium dichotomum, Chrozophora tinctoria, Mirabilis jalapa, Medicago polymorpha, Lathyrus aphaca, Dalbergia sissoo, Melilotus indicus and Anagallis arvensis. The cadmium heavy metals in the examined soil were effectively removed by these plant species. Cerastium dichotomum, and Chenopodium murale were reported to be effective in phyto-stabilizing Cd based on concentrations of selected metals in roots and BCFs, TFs, and BACs values.


Assuntos
Metais Pesados , Mirabilis , Poluentes do Solo , Biodegradação Ambiental , Cádmio , Carbonato de Cálcio , Metais Pesados/análise , Raízes de Plantas/química , Plantas , Cloreto de Polivinila , Solo , Poluentes do Solo/análise
10.
Braz J Biol ; 84: e264642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36169411

RESUMO

Drought is one of the most damaging abiotic stress that hinder plant growth and development. The present study aimed to determine the effects of various Ca/Mg quotients under polyethylene glycol (PEG)-induced osmotic stress on growth, uptake and translocation of Ca and Mg in Avena sativa (L). Plants were grown in nutrient solution supplemented with three different Ca/Mg molar quotients (0.18, 2, and 4). After 30 days plants were exposed to two different PEG (Polyethylene glycol) concentrations (0.6 MPa & 0.2 MPa) for 8 days, and solutions were renewed after 4 days. A solution containing Ca and Mg nutrients has mitigated the negative impact caused via osmotic stress on relative growth rate (RGR), absolute growth rate (AGR), crop growth rate (CGR), leaf area ratio (LAR), Leaf index ratio (LAI), root-shoot ratio (RSR), water use efficiency (WUE) and net assimilation rate (NAR). In addition, it adversely affected germination parameters, including final emergence percentage (FEP), mean germination time (MGT), Timson germination Index (TGI), germination rate index (GRI) and percent field capacity (%FC), of oat (Avena sativa L.). Mg and Ca in shoot and root and Ca translocation factor decreased with increasing Ca in solution, while Mg translocation factor increased with increasing Ca in nutrient solution. In this work, the combined effects of various Ca/Mg quotients and osmotic stress produced by polyethylene glycol (PEG) in different concentrations (0.6 MPa, 0.2 MPa) on the growth and element uptake of Avena sativa L. are examined. As a result, the Ca/Mg Quotient may naturally combat the moderate drought stress experienced by field crops.


Assuntos
Avena , Plântula , Pressão Osmótica , Polietilenoglicóis/farmacologia , Água
11.
Mymensingh Med J ; 31(3): 869-871, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35780376

RESUMO

Poisoning by paraquat herbicide now a days is a major medical problem in many parts of Asia as well as in Bangladesh. Already it has been banned in the European Union and some other countries for several years. Paraquat is highly toxic if ingested, with clinical features including oral burns, sore throat, vomiting and diarrhoea, progressing to pneumonitis, pulmonary fibrosis and multi-organ failure. Recently we dealt with many cases of paraquat poisoning in Mymensingh Medical College Hospital and here we report one case. A 19 years old student intentionally ingested 10 ml of paraquat herbicide and presented with multi organ failure. His renal function was supported with 4 session's hemodialysis and regain normal renal function. But he also developed Acute Lung Injury (ALI) and liver dysfunction, was supported with ionotropic and invasive ventilation and couldn't save. On 14th day of poisoning he died.


Assuntos
Herbicidas , Paraquat , Adulto , Depressão , Escolaridade , Humanos , Masculino , Estudantes , Adulto Jovem
12.
J Neural Eng ; 19(4)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35905708

RESUMO

One of the primary goals in cognitive neuroscience is to understand the neural mechanisms on which cognition is based. Researchers are trying to find how cognitive mechanisms are related to oscillations generated due to brain activity. The research focused on this topic has been considerably aided by developing non-invasive brain stimulation techniques. The dynamics of brain networks and the resultant behavior can be affected by non-invasive brain stimulation techniques, which make their use a focus of interest in many experiments and clinical fields. One essential non-invasive brain stimulation technique is transcranial electrical stimulation (tES), subdivided into transcranial direct and alternating current stimulation. tES has recently become more well-known because of the effective results achieved in treating chronic conditions. In addition, there has been exceptional progress in the interpretation and feasibility of tES techniques. Summarizing the beneficial effects of tES, this article provides an updated depiction of what has been accomplished to date, brief history, and the open questions that need to be addressed in the future. An essential issue in the field of tES is stimulation duration. This review briefly covers the stimulation durations that have been utilized in the field while monitoring the brain using functional-near infrared spectroscopy-based brain imaging.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Encéfalo/fisiologia , Cognição/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Estimulação Transcraniana por Corrente Contínua/métodos
13.
RSC Adv ; 12(24): 15167-15179, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693236

RESUMO

This study explored the structural, electrical, and magnetic properties of diamagnetic aluminium (Al3+) substituted nickel-zinc-cobalt (Ni-Zn-Co) mixed spinel ferrites, though the research on this area is in the infancy stage. Single-phase cubic spinel structures with the Fd3̄m space group of the synthesized Ni0.4Zn0.35Co0.25Fe(2-x)Al x O4 (0 ≤ x ≤ 0.12) ferrite samples were confirmed by X-ray diffraction (XRD) analysis. The average particle size ranged from 0.67 to 0.39 µm. Selected area electron diffraction (SAED) patterns were indexed according to the space group Fd3m, representing the particle's crystallinity. The optical band gaps ranged from 4.784 eV to 4.766 eV. Frequency-dependent dielectric constants and ac conductivity measurement suggested that the prepared ferrites were highly resistive. Relaxation times were reduced to a low value from 45.45 µs to 1.54 µs with the composition x. The Curie temperatures (T c) were 615-623 K for all samples. Real part permeabilities (µ /) were relatively stable up to an extended frequency range of 106 Hz with relative quality factors (RQF) of around 103. Tuning of the properties indicates that the fabricated ferrites may be promising for high-frequency electronic devices.

14.
RSC Adv ; 12(8): 4656-4671, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425488

RESUMO

This study presents a modification of structure-dependent elastic, thermodynamic, magnetic, transport and magneto-dielectric properties of a Ni-Zn-Co ferrite tailored by Gd3+ substitution at the B-site replacing Fe3+ ions. The synthesized composition of Ni0.7Zn0.2Co0.1Fe2-x Gd x O4 (0 ≤ x ≤ 0.12) crystallized with a single-phase cubic spinel structure that belongs to the Fd3̄m space group. The average particle size decreases due to Gd3+ substitution at Fe3+. Raman and IR spectroscopy studies illustrate phase purity, lattice dynamics with cation disorders and thermodynamic conditions inside the studied samples at room temperature (RT = 300 K). Ferromagnetic to paramagnetic phase transition was observed in all samples where Curie temperature (T C) decreases from 731 to 711 K for Gd3+ substitution in Ni-Zn-Co ferrite. In addition, Gd3+ substitution reinforces to decrease the A-B exchange interaction. Temperature-dependent DC electrical resistivity (ρ DC) and temperature coefficient of resistance (TCR) have been surveyed with the variation of the grain size. The frequency-dependent dielectric properties and electric modulus at RT for all samples were observed from 20 Hz to 100 MHz and the conduction relaxation processes were found to spread over an extensive range of frequencies with the increase in the amount of Gd3+ in the Ni-Zn-Co ferrite. The RLC behavior separates the zone of frequencies ranging from resistive to capacitive regions in all the studied samples. Finally, the matching impedance (Z/η 0) for all samples was evaluated over an extensive range of frequencies for the possible miniaturizing application.

15.
Neural Regen Res ; 17(8): 1850-1856, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017448

RESUMO

Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease. It is imperative to develop a proper treatment for this neurological disease in the aging society. This observational study investigated the effects of acupuncture therapy on MCI patients. Eleven healthy individuals and eleven MCI patients were recruited for this study. Oxy- and deoxy-hemoglobin signals in the prefrontal cortex during working-memory tasks were monitored using functional near-infrared spectroscopy. Before acupuncture treatment, working-memory experiments were conducted for healthy control (HC) and MCI groups (MCI-0), followed by 24 sessions of acupuncture for the MCI group. The acupuncture sessions were initially carried out for 6 weeks (two sessions per week), after which experiments were performed again on the MCI group (MCI-1). This was followed by another set of acupuncture sessions that also lasted for 6 weeks, after which the experiments were repeated on the MCI group (MCI-2). Statistical analyses of the signals and classifications based on activation maps as well as temporal features were performed. The highest classification accuracies obtained using binary connectivity maps were 85.7% HC vs. MCI-0, 69.5% HC vs. MCI-1, and 61.69% HC vs. MCI-2. The classification accuracies using the temporal features mean from 5 seconds to 28 seconds and maximum (i.e, max(5:28 seconds)) values were 60.6% HC vs. MCI-0, 56.9% HC vs. MCI-1, and 56.4% HC vs. MCI-2. The results reveal that there was a change in the temporal characteristics of the hemodynamic response of MCI patients due to acupuncture. This was reflected by a reduction in the classification accuracy after the therapy, indicating that the patients' brain responses improved and became comparable to those of healthy subjects. A similar trend was reflected in the classification using the image feature. These results indicate that acupuncture can be used for the treatment of MCI patients.

16.
Mol Biol Rep ; 49(6): 5229-5240, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34387804

RESUMO

BACKGROUND: Sea buckthorn (Hippophae) is in the focus of interest mainly for its positive effects on health of both human and animal organisms. Due to the similarities in vegetative morphology, Hippophae species are often misidentified. Therefore, current study was focused on ITS based sequence characterization of sea buckthorn species and comparative biochemical evaluation for its antioxidant properties. METHODS AND RESULTS: DNA was extracted from leaf samples. Primer pairs K-Lab-SeaBukRhm-ITS1F1- K-Lab-SeaBukRhm-ITS1R1 and K-LabSeaBukTib- ITSF1- K-LabSeaBukTib-ITSR1 were used for PCR amplification. The purified PCR products were outsourced for sequencing. Phylogenetic tree was constructed based on neighbor-joining (NJ) method. Moreover, comparison of antioxidant potential of leaves of two sea buckthorn species (Hippophae rhamnoides and Hippophae tibetana) collected from different regions of Ladakh viz., Stakna, Nubra, DRDO Leh and Zanskar was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3- ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), and Total antioxidant capacity (TAC) by phosphomolybdenum assays. The present investigation led to the differentiation of two sea buckthorn species viz., H. rhamnoides and H. tibetana based on Internal Transcribed Spacer (ITS) region. Moreover, significant variation was observed in antioxidant potential of leaf extracts collected from different regions. CONCLUSIONS: Primary ITS sequence analysis was found to be powerful tool for identification and genetic diversity studies in sea buckthorn. Leaves of sea buckthorn have pronounced antioxidant properties and can be used in food, neutraceuticals and pharmaceutical industries etc. The current study will pave the way to discover small bioactive molecules responsible for antioxidant and anticancer properties in sea buckthorn.


Assuntos
Hippophae , Animais , Antioxidantes/análise , Frutas/química , Variação Genética , Hippophae/química , Hippophae/genética , Filogenia , Extratos Vegetais/química
17.
Sensors (Basel) ; 21(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34883949

RESUMO

Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e., optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky-Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were 0.75±0.04, 0.75±0.05, and 0.77±0.06 using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications.


Assuntos
Interfaces Cérebro-Computador , Espectroscopia de Luz Próxima ao Infravermelho , Análise Discriminante , Humanos , Movimento , Máquina de Vetores de Suporte
18.
Biomed Opt Express ; 12(10): 5939-5954, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745714

RESUMO

One of the primary objectives of the brain-computer interface (BCI) is to obtain a command with higher classification accuracy within the shortest possible time duration. Therefore, this study evaluates several stimulation durations to propose a duration that can yield the highest classification accuracy. Furthermore, this study aims to address the inherent delay in the hemodynamic responses (HRs) for the command generation time. To this end, HRs in the sensorimotor cortex were evaluated for the functional near-infrared spectroscopy (fNIRS)-based BCI. To evoke brain activity, right-hand-index finger poking and tapping tasks were used. In this study, six different stimulation durations (i.e., 1, 3, 5, 7, 10, and 15 s) were tested on 10 healthy male subjects. Upon stimulation, different temporal features and multiple time windows were utilized to extract temporal features. The extracted features were then classified using linear discriminant analysis. The classification results using the main HR showed that a 5 s stimulation duration could yield the highest classification accuracy, i.e., 74%, with a combination of the mean and maximum value features. However, the results were not significantly different from the classification accuracy obtained using the 15 s stimulation. To further validate the results, a classification using the initial dip was performed. The results obtained endorsed the finding with an average classification accuracy of 73.5% using the features of minimum peak and skewness in the 5 s window. The results based on classification using the initial dip for 5 s were significantly different from all other tested stimulation durations (p < 0.05) for all feature combinations. Moreover, from the visual inspection of the HRs, it is observed that the initial dip occurred as soon as the task started, but the main HR had a delay of more than 2 s. Another interesting finding is that impulsive stimulation in the sensorimotor cortex can result in the generation of a clearer initial dip phenomenon. The results reveal that the command for the fNIRS-based BCI can be generated using the 5 s stimulation duration. In conclusion, the use of the initial dip can reduce the time taken for the generation of commands and can be used to achieve a higher classification accuracy for the fNIRS-BCI within a 5 s task duration rather than relying on longer durations.

19.
Plant Biol (Stuttg) ; 23(5): 797-805, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34263973

RESUMO

Melatonin (Mel) and hydrogen sulphide (H2 S) have emerged as potential regulators of plant metabolism during abiotic stress. Presence of excess NaCl in the soil is one of the main causes of reduced crop productivity worldwide. The present investigation examines the role of exogenous Mel and endogenous H2 S in tomato seedlings grown under NaCl stress. Effect of 30 µm Mel on endogenous synthesis of H2 S was examined in roots of NaCl-stressed (200 mm) tomato seedlings. Also, the impact of treatments on the oxidative stress markers, transport of K+ and Na+ , and activity of H+ -ATPase and antioxidant enzymes was assessed. Results show that NaCl-stressed seedlings supplemented with 30 µm Mel had increased levels of endogenous H2 S through enhanced L-cysteine desulfhydrase activity. Mel in association with H2 S overcame the deleterious effect of NaCl and induced retention of K+ that maintained a higher K+ /Na+ ratio. Use of plasma membrane inhibitors and an H2 S scavenger revealed that Mel-induced regulation of K+ /Na+ homeostasis in NaCl-stressed seedling roots operates through endogenous H2 S signalling. Synergistic effects of Mel and H2 S also reduced the generation of ROS and oxidative destruction through the enhanced activity of antioxidant enzymes. Thus, it is suggested that the protective function of Mel against NaCl stress operates through an endogenous H2 S-dependent pathway, wherein H+ -ATPase-energized secondary active transport regulates K+ /Na+ homeostasis.


Assuntos
Sulfeto de Hidrogênio , Melatonina , Solanum lycopersicum , Antioxidantes , Solanum lycopersicum/metabolismo , Melatonina/farmacologia , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Plântula/metabolismo , Cloreto de Sódio/farmacologia
20.
Neuroscience ; 460: 13-30, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571596

RESUMO

Because hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels modulate the excitability of cortical and hippocampal principal neurons, these channels play a key role in the hyperexcitability that occurs during the development of epilepsy after a brain insult, or epileptogenesis. In epileptic rats generated by pilocarpine-induced status epilepticus, HCN channel activity is downregulated by two main mechanisms: a hyperpolarizing shift in gating and a decrease in amplitude of the current mediated by HCN channels, Ih. Because these mechanisms are modulated by various phosphorylation signaling pathways, we hypothesized that phosphorylation changes occur at individual HCN channel amino acid residues (phosphosites) during epileptogenesis. We collected CA1 hippocampal tissue from male Sprague Dawley rats made epileptic by pilocarpine-induced status epilepticus, and age-matched naïve controls. We also included resected human brain tissue containing epileptogenic zones (EZs) where seizures arise for comparison to our chronically epileptic rats. After enrichment for HCN1 and HCN2 isoforms by immunoprecipitation and trypsin in-gel digestion, the samples were analyzed by mass spectrometry. We identified numerous phosphosites from HCN1 and HCN2 channels, representing a novel survey of phosphorylation sites within HCN channels. We found high levels of HCN channel phosphosite homology between humans and rats. We also identified a novel HCN1 channel phosphosite S791, which underwent significantly increased phosphorylation during the chronic epilepsy stage. Heterologous expression of a phosphomimetic mutant, S791D, replicated a hyperpolarizing shift in Ih gating seen in neurons from chronically epileptic rats. These results show that HCN1 channel phosphorylation is altered in epilepsy and may be of pathogenic importance.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Espectrometria de Massas , Fosforilação , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA